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Abstract 
 
The homogeneous charge compression ignition (HCCI) engine is a next-generation engine offering high efficiency and low emissions. 

However, the rate of pressure rise is a major limitation for a high load range. Recently, the rate of pressure rise was reduced using thermal 
stratification. Nevertheless, this was insufficient to produce high power. In the absence of a higher equivalent ratio, one way to improve 
power is to increase intake boost pressure. The rate of pressure rise is suggested to be reduced by thermal stratification, and power is 
increased by boost pressure at the same time. The objective of this work is to understand the characteristics of combustion, knock, and 
emissions for utilizing both thermal stratification and boost pressure. Calculations are performed by CHEMKIN and modified SENKIN. 
As a result of increasing boost pressure, a higher indicated mean effective pressure (IMEP) was attained, while the rate of pressure rise 
increased only slightly in HCCI with thermal stratification. 
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1. Introduction 

To compete with high oil prices and help mitigate the global 
warming problem, developing a high-efficiency and low-
emission engine is essential. The homogeneous charge com-
pression ignition (HCCI) engine, which ignites a homogene-
ous charge by compression of the piston, is a promising can-
didate. An HCCI engine produces low particulate matter (PM) 
and nitrogen oxide (NOx) emissions by using an ultra-lean 
premixture, offering high efficiency owing to a high compres-
sion ratio similar to that of the compression ignition (CI) en-
gine.  

However, despite these advantages, the use of HCCI en-
gines has not been realized. This is primarily due to the knock-
ing associated with an excessive rate of pressure rise at high–
load operations during combustion. To address this concern, 
recent reports have suggested reducing the rate of pressure rise 
by thermal stratification, fuel stratification, and combustion 
retard [1-3]. 

For thermal stratification, the local gas temperature differ-
ence affects combustion phasing. Therefore, continuous com-
bustion reduces the rate of pressure rise, and a higher initial 

temperature and wider thermal width help decrease it. Never-
theless, an HCCI engine is insufficient in producing high 
power. 

In the absence of a higher equivalent ratio, one way to improve 
power is to increase intake boost pressure [4-6]. The effect of 
boost pressure is that as the booster increases an initial pressure, 
air density increases. Although the equivalent ratio remains con-
stant, power can be increased by intensifying a heat input unit 
cycle. 

An existing study merely focuses on thermal stratification 
for reducing the rate of pressure rise in HCCI combustion. In 
this study, it is suggested that the rate of pressure rise is re-
duced by thermal stratification, and power is increased by 
boost pressure simultaneously. The objective of this work is to 
understand the characteristics of combustion, knock, and 
emissions for utilizing both thermal stratification and boost 
pressure. 

Di-methyl ether (DME), which is characterized by low 
temperature reaction (LTR) and high temperature reaction, 
was utilized as test fuel. DME produces high heat release dur-
ing LTR, so a significant temperature difference exists imme-
diately before HTR. Thus, DME is more appropriate for pro-
ducing thermal stratification by heat release in LTR. The char-
acteristics of DME compared to n-Butane and iso-Octane are 
outlined in Table 1. 
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Table 1. Fuel properties. 
 

Name DME n-Butane Iso-Octane 

Molecular  
formula CH3OCH3 C4H10 C8H18 

Lower heating value 
(kcal/m3) 14,143  26,504  47,832  

Cetane number 55-60 <10 <10 

Low-temperature 
reaction (%) 10-30 0-5 0-5 

Hig-temperature 
reaction (%) 70-90 95-100 95-100 

 
Table 2. Engine specification. 
 

Displacement [cc] 1133 

Bore (mm) 112 

Stroke (mm) 115 

Connecting Rod Length (mm) 205 

Compression Ratio 21.6 

Number of Valves  2 

IVC (deg ABDC) 48 

EVO (deg ABDC) 312 

 

2. Calculation method 

In this study, CHEMKIN2 and modified SENKIN, software 
programs developed at Sandia National Laboratories, are util-
ized from homogeneous temperature to thermal stratification 
conditions [7, 8]. Curran`s scheme (species: 78, reaction: 336) 
is utilized as the chemical reaction model of DME [9] Table 2 
shows the specifications of the engine as a yammer single 
cylinder, which is used for the calculation. 

A range of calculation is from right after intake valve close 
to right before exhaust valve open. The thermodynamic char-
acteristics of gas are calculated in merely one compression 
and expansion stroke. It is assumed that all gas is ideal gas (1), 
and heat and mass transfer are not considered.  

Two conservation laws are observed: The energy conserva-
tion law (2) and the mass conservation law (3). In one zone, 
the gas pressure, temperature, and composition of species are 
completely uniform. In-cylinder mass average gas temperature 

cT is calculated with total energy equation (4). 
 

nRTPv =   (1) 
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Fig. 1. Algorithm flow diagram for the multi-zone model. 
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Fig. 2. Definition of combustion duration. 
 
where  

N: Number of zone  
ni: Number of moles 
Cp,i: Specific heat at a constant pressure of ith zone  
 
As the initial pressure increases, a heat input per cycle Qin 

(5) is calculated as 
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where  

QLHV: Low heat value of DME  
FAi: Volume ratio of fuel to air of ith zone 
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Heat transfer and blow-off were not taken into account in 
the calculation. Each zone of the multi-zone area for thermal 
stratification was based on a single zone model for homoge-
neous temperatures. Fig. 1 demonstrates the process of multi-
zone calculation. After inputting the initial pressure, tempera-
ture, and volume, the pressure of each zone increased regu-
larly, and the volume of each was altered by the piston com-
pression after the right intake valve closed. The amount of 
volume change of each zone was again converted to pressure, 
which was equilibrated. The equilibrated pressure was substi-
tuted by the next pressure value. 

As Fig. 2 illustrates, combustion duration was defined by 
the starting point and end point of LTR, which were heat re-
lease rate=0.2 kJ/ms, and the starting point and end point of 
HTR, which were heat release rate=1.0 kJ/ms. However, the 
boundary between LTR and HTR was indistinct in thermal 
stratification. Thus, for thermal stratification, combustion du-
ration was defined by the position of 10%, 50%, and 90% 
burn point of total heat release - CA10, CA50, and CA90, 
respectively. 

The most elementary knocking criterion employed to limit 
the allowable operating range without knocking HCCI com-
bustion was to specify a limit on the maximum rate of cylinder 
pressure rise. Although setting the limit of the maximum rate 
of pressure rise is a useful metric, it does not appear to be a 
uniformly appropriate criterion [10]. For example, Christensen 
et al. operated an HCCI engine under both naturally aspirated 
and supercharged conditions. They reported that a larger 
maximum rate of pressure rise could be withstood for super-
charged conditions without knocking (an undue increase in 
engine noise) than for the naturally aspirated system. The ring-
ing intensity (RI) developed by J.A. Eng was employed to 
confirm the occurrence of knocking [10]. In this work, knock-
ing was confirmed and identified by RI. Therefore, 5 MW/m2 
was selected as the limit for an acceptable RI in the HCCI 
engine [15]. 

 

max
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P
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×
×

×=   (6) 

 
where 

dtmax= maximum pressure rise rate 
Pmax: maximum pressure 
Tmax: maximum temperature 
γ: Cp/Cv 
R: gas constant of air 
 

3. Calculation Results 

3.1 Homogeneous Temperature 

3.1.1 Characteristics of HCCI combustion by increasing 
initial temperature  

Fig. 3 illustrates the traces of pressure, temperature, and 
heat release at initial temperatures of 293, 353, 413, and 473 K.  
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Fig. 3. History of pressure, temperature, heat release rate, and combus-
tion duration at T0=293, 353, 413, and 473, P0=0.1 MPa. 
 
The rate of pressure rise was approximately 19, 21, 22, and 34 
MPa/ms, and the maximum pressure was 10, 11, 12, and 13 
MPa at initial temperatures of 293, 353, 413, and 473 K, re-
spectively. As the initial temperature increased, the rate of 
pressure rise and maximum pressure decreased. In general, as 
the initial temperature increases, final state parameters such as 
pressure and temperature are increased. In this case, CA50 
occurs after TDC. Heat of combustion accompanies pressure 
rise. Thus, there is maximum pressure given the condition that 
CA50 occurs near TDC. 

When the initial temperature increased from 273 to 473 K, 
the maximum temperature increased from 1,913 to 2,472 K. 
Independent of initial temperature, both LTR and HTR started 
at 775 ± 10 and 1,150 ± 50 K, respectively. Maximum heat 
release rate increased, but the heat release rate at LTR de-
creased as the initial temperature increased. Total combustion 
duration decreased, and both LTR and HTR advanced as ini-
tial temperature increased.  

If the thermal stratification effect exists in the in-cylinder (if 
initial temperature of each zone is different), ignition occurs in 
sequence from a high-temperature to a low-temperature region. 
Thus, the time of maximum heat release may occur in se-
quence. It is expected that the maximum rate of pressure rise 
would decrease. 
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3.1.2 Characteristics of HCCI combustion by increasing 
initial pressure  

Fig. 4 illustrates the trace of pressure and temperature at an 
initial temperature of 383 K and an initial pressure of 0.1, 0.12, 
0.14, 0.16, and 0.18 MPa as homogeneous temperature. Heat 
addition was 848, 1,004, 1,171, 1,339, and 1,506 J/cycle at an 
initial pressure of 0.1, 0.12, 0.14, 0.16, and 0.18 MPa, respec-
tively. When the initial pressure changed from 0.1 to 0.18 
MPa, the maximum pressure increased from 11 to 21 MPa—a 
difference of approximately 10 MPa. Further, the maximum 
temperature increased to approximately 54 K from 2,236 to 
2,290 K. Changing the initial pressure created an effect on 
maximum pressure, but it posed a negligible effect on maxi-
mum temperature. 

Fig. 5 presents the combustion duration (t = 22 ~ 25 ms). 
The initial pressure increased from 0.1 to 0.18 MPa, and the 
maximum rate of pressure rise was 22.1, 21.9, 21.4, and 23.1 
MPa/ms. Changing the initial pressure did not significantly 
affect the rate maximum pressure rise for the combustion du-
ration. Independent of initial pressure, both LTR and HTR 
occurred at a regular temperature: 780 ± 10 K and 1110 ± 30 
K, respectively. The heat release rates at both HTR and LTR 
increased as initial pressure increased. When the initial pres-
sure increased from 0.1 to 0.18 MPa, two spikes of HTR were 
observed. If the initial pressure increased from 0.1 to 0.18 
MPa, then LTR and HTR advanced by 0.17 and 0.98 ms, re-
spectively. The combustion duration was approximately 2.04 
and 1.27 ms when the initial pressure was 0.1 MPa and 0.18 
MPa, respectively. Combustion duration was reduced by ap-
proximately 0.77 ms. The total combustion duration was re-
duced as initial pressure increased. 

 
3.1.3 Chemical species concentration profile 
The chemical species concentration profile (Figs. 6-9) dem-

onstrates the mole fraction histories of chemical species at 
various initial temperatures and pressures. These figures in-
clude the history of pressure, temperature, and heat release for 
each condition. At the time of heat release, DME (CH3OCH3) 
begins to reduce, and concentrations of CO, CO2, HCHO, and 
H2O2 increase rapidly. Concentrations of HCHO and H2O2 
affecting the HTR begin to decrease quickly at the start of 
HTR. The behavior of OH mole fraction has the same ten-
dency as the heat release rate [11]. HTR rises by the activation 
of the decomposition reaction of H2O2 accumulated in LTR to 
OH [12]. 

The mole fraction histories of each chemical species at an 
initial temperature of 293 and 473 K are outlined in Figs. 6- 7. 
Concentrations of H2O2 and HCHO lasted from the beginning 
of LTR to the end of HTR. As the initial temperature in-
creased from 293 to 473 K, they remained at a peak value, at 
approximately 0.63 and 3.61 ms, respectively. As the initial 
temperature was high, both HCHO and H2O2 were consumed 
slowly. An existing period of intermediates increased to ap-
proximately 2.98 ms when the initial temperature increased 
from 273 to 473 K. As a result, it was observed that the  
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Fig. 4. History of pressure and temperature at T0=383K, P0=0.1, 0.12, 
0.14, 0.16, and 0.18MPa. 
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Fig. 5. History of pressure, temperature, and heat release rate at 
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maximum rate of pressure rise decreased. 

The mole fraction histories of each chemical species at an 
initial pressure of 0.1 and 0.18 MPa are presented in Figs. 8-9. 
Concentrations of H2O2 and HCHO lasted from the beginning 
of LTR to the end of HTR.  

As the initial pressure increased from 0.1 to 0.18 MPa, they  
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Fig. 6. Radical history at an initial temperature of 293K under homo-
geneous temperature condition. 
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Fig. 7. Radical history at an initial temperature of 473K under homo-
geneous temperature condition. 
 
remained at a peak value, at approximately 1.76 and 0.96 ms, 
respectively. An existing period of intermediates decreased at 
approximately 0.8 ms when the initial pressure increased from 
0.1 to 0.18 MPa. As initial pressure was high, an existing pe-
riod of intermediates decreased. When the initial pressure 
increased from 0.1 to 0.18 MPa despite the increase in heat 
input, the mole fraction of H2O2, which affected HTR, remained 
nearly between LTR and HTR. Thus, the rate of pressure rise did 
not increase significantly, possessing a similar value. 
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Fig. 8. Radical history at an initial pressure of 0.1MPa under homoge-
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Fig. 9. Radical history at an initial pressure of 0.18MPa under homo-
geneous temperature condition. 

 
3.2 Thermal stratification  

3.2.1 Characteristics of HCCI combustion by increasing 
booster pressure 

Fig. 10 displays the traces of pressure, temperature, and rate 
of heat release when the initial average temperature was 0T = 
383 K, the thermal width was TW = 100 K, and the initial 
pressure was P0 = 0.1, 0.12, 0.14, 0.16, and 0.18 MPa. Heat 
addition was 855, 1012, 1181, 1350, and 1519 J/cycle at an 
initial pressure of 0.1, 0.12, 0.14, 0.16, and 0.18 MPa, respec-
tively. The maximum pressure increased from 12 to 21 MPa 
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when the initial pressure was modified from 0.1 to 0.18 
MPa—a difference of approximately 9 MPa. Further, the 
maximum temperature increased approximately 49 K from 
2,236 to 2,285 K. Similar to the homogeneous temperature 
condition, changing the initial pressure had an effect on 
maximum pressure but posed a negligible effect on maximum 
temperature under thermal stratification. 

Combustion duration (t = 20-26ms) is presented in Fig. 11. 
The maximum rate of pressure rise increased by approxi-
mately 3.5 MPa/ms from 4.4 to 7.9 MPa/ms when initial pres-
sure increased from 0.1 to 0.18 MPa. As compared to homo-
geneous temperature, the maximum rate of pressure rise was 
reduced significantly by thermal stratification. Both LTR and 
HTR were clearly differentiated at a homogeneous tempera-
ture; however, the boundary between LTR and HTR was in-
distinct in thermal stratification. Therefore, as Fig. 2 illustrates, 
combustion duration was applied. CA10 and CA50 increased 
by 1.04 ms and 0.94 ms, respectively, as initial pressure in-
creased from 0.1 to 0.18 MPa. Additionally, the duration of 
the period during which heat was significantly emitted, CA10-
90, was 1.3 and 1.43 ms with an initial pressure of 0.1 and 
0.18 MPa, respectively. It was confirmed that total combus-
tion duration decreased. In contrast, CA10-90 increased when 
the initial pressure increased. 

 
3.3 Ringing intensity and IMEP 

Fig. 12 presents the effect of increasing the initial pressure 
on RI and IMEP under thermal stratification. All cases have 
the equivalent ratio ØDME = 0.280 and initial pressure of P0 = 
0.1, 0.12, 0.14, 0.16, and 0.18 MPa. For thermal stratification, 
the initial average gas temperature 0T =383 K and thermal 
width TW = 100 K. Meanwhile, for homogeneous tempera-
ture, initial gas temperature T0 = 383 K and thermal width TW  
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Fig. 10. History of pressure and temperature under thermal stratifica-
tion condition. 

= 0 K. 
 
3.3.1 For homogeneous temperature 
As initial pressure increased, RI decreased from 36.01 to 

21.92 MW/m2, a difference of approximately 14.09 MW/m2. 
Meanwhile, IMEP increased from 0.493 to 0.818 MPa, a dif-
ference of approximately 0.325 MPa. 
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Fig. 11. History of pressure, temperature, and heat release rate under 
thermal stratification condition. 
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Fig. 12. RI and IMEP at initial pressure of 0.1, 0.12, 0.14, 0.16, and 
0.18 MPa under thermal stratification and homogeneous temperature. 
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3.3.2 For thermal stratification 
As initial pressure increased, RI increased from 1.44 to 2.56 

MPa, a difference of approximately 1.12 MW/m2. RI appeared 
to be under 5 MW/m2 (a range within which knocking can be 
avoided). IMEP increased from 0.491 to 0.807 MPa, a differ-
ence of approximately 0.316 MPa. Thermal stratification did 
not affect IMEP. Therefore, IMEP under thermal stratification 
case is similar to that under a homogeneous temperature case. 
Though the equivalent ratio remained constant, IMEP was 
increased by growing a heat input per unit cycle. 

 
3.4 Emission of HCCI combustion 

Fig. 13 presents the traces of temperature, IMEP, and emis-
sions of CO and NOx for homogeneous temperature condi-
tions, thermal stratification conditions (P0 = 0.1 MPa, TW = 
100 K), and both thermal stratification and booster (P0 = 0.18 
MPa, TW = 100 K) conditions when RI was approximately 5 
MW/m2 to avoid knocking. 

The first case was for a homogeneous temperature, with the 
following values: equivalent ratio, ØDM E = 0.22; initial pres-
sure, P0 = 0.1 MPa; initial temperature, T0 = 383 K; and heat 
input, Qin= 669 J/cycle.  

The second case was for thermal stratification only, with the 
following values: equivalent ratio, ØDME = 0.35; initial pres-
sure, P0 = 0.1 MPa; initial average gas temperature, 0T = 383 
K; thermal width, TW =100 K; and heat input, Qin = 1064 
J/cycle. 

The third case was for both the thermal stratification and 
booster, with the following values: equivalent ratio, ØDME = 
0.35; initial pressure, P0 = 0.18 MPa; initial average gas tem-
perature, 0T = 383 K; thermal width, TW = 100 K; and heat 
input, Qin= 1889 J/cycle. 

 
3.4.1  For a homogeneous temperature vs. for thermal 

stratification only 
IMEP increased from 0.407 to 0.576 MPa, and maximum 

temperature increased from 2,019 to 2,454 K because the 
equivalent ratio increased from 0.22 to 0.35. CO emission 
when ØDME= 0.22 decreased as compared to that observed 
when ØDME= 0.35. CO was considerably generated in the 
presence of insufficient oxygen to convert all carbon to CO2 
and when an engine ran rich [13]. It appeared that NOx emis-
sion when ØDME= 0.22 was similar to that when ØDME= 0.35. 

 
3.4.2 For thermal stratification only vs. for thermal strati-

fication and boost pressure 

Without regard to the change in initial pressure, it appeared 
that the maximum in-cylinder gas temperature was similar.  

The CO emission when the initial pressure was 0.18 MPa 
decreased approximately 55% more than when the initial pres-
sure was 0.1 MPa. As initial pressure increased to 0.18 MPa, 
air density increased as well. Hence, volume efficiency im-
proved, and carbon monoxide was decreased [13]. 

The NOx emission when the initial pressure was 0.18 MPa  
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Fig. 13. IMEP, maximum gas temperature, and CO and NOx emissions 
under RI ≤ 5MW/m2. 

 
increased approximately 65% greater as compared to that for a 
case wherein the initial pressure was 0.1 MPa. Significant 
NOx was generated when the combustion temperature was 
greater than 2200 K. [14] In addition to temperature, the for-
mation of NOx depends on the pressure, air-fuel ratio, and 
combustion time within the cylinder, chemical reactions not 
being instantaneous [13]. The period during which the in-
cylinder gas temperature remained greater than 2,200 K was 
8.54 and 7.48 ms for an initial pressure of 0.18 MPa and 0.1 
MPa, respectively [Appendix A]. Despite a different initial 
pressure, the in-cylinder gas temperature remained similar. 
However, because the period in which the in-cylinder gas 
temperature remained greater than 2,200 K increased as initial 
pressure increased, the rate of NOx emission increased as well. 

 
4. Conclusion 

The objective of this work is to understand the characteris-
tics of combustion, knock, and emissions for use in both ther-
mal stratification and boost pressure.  

The following results were obtained from this work: 
 
- For a homogeneous temperature: 
As the initial temperature increased, the maximum rate of 

pressure rise decreased. Both LTR and HTR advanced, and 
combustion duration increased. 

As initial temperature increased, both HCHO and H2O2 
were consumed slowly. An existing period of intermediates 
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increased to allow the maximum rate of pressure rise to de-
crease. 

As initial pressure increased despite the increase in maxi-
mum pressure, the maximum temperature remained constant. 
Both LTR and HTR advanced, and the combustion duration 
decreased. 

When the initial pressure increased from 0.1 to 0.18 MPa 
despite the increase in heat input, the mole fraction of H2O2, 
which affected HTR, remained nearly between LTR and HTR. 
Thus, the rate of pressure rise did not increase significantly.  

- For thermal stratification: 
Both maximum pressure and temperature were similar to 

the case involving homogeneous temperature. However, the 
maximum rate of pressure rise and RI decreased by thermal 
stratification. 

Although the equivalent ratio is the same as the initial pres-
sure increased, IMEP was increased by growing the heat input 
unit cycle. 

As the initial pressure increased, air density increased as 
well, and volume efficiency improved. Hence, the rate of CO 
emission decreased. 

The period during which the in-cylinder gas temperature 
remained greater than 2,200 K increased as the initial pressure 
increased, so the rate of NOx emission increased significantly 
as well. 
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